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Abstract

Soil bulk density (Db) is a major contributor to uncertainties in landscape-scale carbon
and nutrient stock estimation. However, it is time consuming to measure and is, there-
fore, frequently predicted using surrogate variables, such as soil texture. Using this
approach is of limited value for estimating landscape scale inventories, as its accuracy5

beyond the sampling point at which texture is measured becomes highly uncertain. In
this paper, we explore the ability of soil landscape models to predict soil Db using a
suite of landscape attributes and derivatives for both topsoil and subsoil. The models
were constructed using random forests and artificial neural networks.

Using these statistical methods, we have produced a spatially distributed prediction10

of Db on a 100 m×100 m grid which was shown to significantly improve topsoil carbon
stock estimation. In comparison to using mean values from point measurements, the
error associated with predictions was over three times lower using the gridded predic-
tion. Within our study area of the Midlands, UK, we found that the gridded prediction
of Db produced a stock inventory of nearly 8 million tonnes of carbon less than the15

mean method. Furthermore, the gridded approach was particularly useful in improv-
ing organic carbon (OC) stock estimation for fine-scale landscape units at which many
landscape-atmosphere interaction models operate.

1 Introduction

Bulk density (Db) is defined as the oven-dry mass per unit volume of a soil (IUSS20

Working Group, 2006). It dictates water and solute movement through the soil, can be
indicative of soil quality for agriculture and is vital for soil carbon and nutrient stock
assessment (Bellamy et al., 2005; Ungaro et al., 2010; Martin et al., 2011). After the
oceans, terrestrial ecosystems are the second largest store of carbon on earth, with
the majority contained in soils (Batjes, 1996). These terrestrial carbon pools are highly25

susceptible to short term variation and are readily affected by anthropogenic influences
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such as land use changes. Consequently, they play a critical role in determining current
and future global carbon budgets (Bellamy et al., 2005). Soil can either be a net sink
or source of carbon (Janssens et al., 2005) and there is continuing debate as to its
potential to mitigate atmospheric CO2 emissions (Smith et al., 2005). The accuracy of
soil carbon stock estimations is, therefore, of paramount importance.5

Dawson and Smith (2007) suggest that much of the error associated with carbon
stock inventory in soils can be traced back to uncertainties in Db estimates, prompting
further investigation into the methods for deriving these estimates. Furthermore, soil
carbon content plays a crucial role in spatially distributed, integrated land-atmosphere
process models such as JULES (Harrison et al., 2008). There is evidence that im-10

provements to the soil C component in these types of models increases their response-
sensitivity to changes in soil stocks and processes. For instance, Jones et al. (2005)
compared the outputs of a non-distributed soil C model to those from a multipool, dis-
tributed, soil C model and found that there was a difference in the magnitude of the
feedback between climate and soil C when the distributed model was considered. Es-15

timating the size of spatially distributed carbon pools requires a spatially distributed
estimate of Db.

There are two principal approaches to estimating carbon stocks. One is to predict
soil carbon concentrations across the landscape (often using geostatistics) and then
combine these with a measure of Db and depth to predict the stock (Ungaro et al.,20

2010). The problem with this is that using mean Db values to convert predicted soil
OC concentrations into OC stocks (i.e. the failure to use spatially varying Db values)
is flawed because important variations individual soil types are omitted (Grimm et al.,
2008). Alternatively, stock can be predicted directly across the landscape (Jones et al.,
2005). The issue with this approach is that it cannot account for variations in the rela-25

tionship between OC content and Db across the landscape, fixing this relationship at
the point scale. This makes prediction at the landscape scale difficult as at that scale,
soil properties are driven by physical environmental gradients and boundaries, such
as topography, parent material and hydrologically effective rainfall. One of the most
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important recent research themes of international interest is the anticipated change in
terrestrial carbon stock under changing climate and land-use (Yu et al., 2012; Zaehle et
al., 2007). By modeling Db using these changing landscape attributes, it can be viewed
as spatially variable rather than as a fixed soil property. This may be an important con-
sideration when predicting changes in soil carbon stocks over time, as both the soil5

carbon concentration and Db will vary with changes in climate and land use. Lastly,
large datasets containing measurements of soil properties are scarce, prompting in-
vestigation into the possibility of making predictions using landscape variables.

Soils are formed through the combined effect of physical, chemical, biological and
anthropogenic processes on soil parent material. These factors will affect soil forma-10

tion in different ways across the landscape, resulting in the spatial variation observed
in Db. Defined originally by Jenny (1941), these factors are; soil, climate, organisms,
relief, parent material, age and landscape position (SCORPAN). Today this information
can be obtained from existing, large-scale soil maps, climatic data, landuse/landcover
maps, digital terrain models and their derivatives, parent material/geology, and land-15

scape position. We can formalize the relationship between measured Db and the soil
forming factors at the sampling location and in the surrounding landscape using statis-
tical models (McBratney et al., 2003). These models are developed based on existing
data and expert- or empirically-derived soil-environmental relationships. They can then
be used to predict Db within a landscape.20

Recently, these principals have been applied to the prediction of both Db (Jalabert et
al., 2010; Martin et al., 2009) and organic carbon stock (Wiesmeier et al., 2011; Grimm
et al., 2008) at the point scale with considerable success. Methods commonly used
to explicitly include landscape attributes in the modeling process are Artificial Neural
Networks (ANNs) (Keshavarzi et al., 2010) and Random Forests (Prasad et al., 2006).25

The objective of this study is to determine the efficacy of soil landscape models to
predict Db for any given landscape, and we do so using a range of models. Our intent
is not to determine the best modeling method, but rather to cover nonlinear (Random
Forests and ANN) predictive methods to establish the feasibility of a landscape level
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prediction of Db. Here, we consider a data poor environment (as the models do not
include OC or soil textural properties ad predictors) in which we rely on landscape-
derived attributes. This allows us to produce spatial estimates of Db without interpola-
tion and lets us consider the implications of spatial uncertainty for the wider modeling
community.5

2 Materials and methods

2.1 Data

2.1.1 Soil survey data

The soils data for this study were obtained from samples collected between 1970 and
1987 during the 1 : 25 000 and 1 : 50 000 soil mapping of England and Wales. The10

dataset has been described in detail by Hallett et al. (1998). Undisturbed 222 cm3 soil
cores were taken in triplicate using the methods detailed by Hodgson (1976), the Db
and other soil measurements (organic carbon content, particle size fraction, textural
class and depth of the horizons) were derived using methods described by Avery and
Bascomb (1982). Due to limitations of computational power required to derive land-15

scape attributes for the whole country, a subset of the data was selected from a limited
area (a 18 150 km2 region of the English Midlands) based on the relatively high density
of samples (Fig. 1). The soils in the area are dominated by brown earths and surface
water gleys, most of which have either a coarse or fine loamy texture, with some more
clayey soils in the south of the region (McGrath and Loveland, 1992). The bedrock is20

dominated by undifferentiated argillaceous rocks with prominent areas of sandstone in
the west and patches of limestone in both the north and south. The elevation ranges
from −2 m to over 550 m.
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2.1.2 Topographic data

Although not usually applied to the modeling of Db, topographic model parameters are
frequently used in digital soil mapping (McBratney et al., 2003) and have been specif-
ically used to predict soil organic carbon concentration (Grimm et al., 2008). A 10 m
resolution digital terrain model (DTM) was used to derive the following landscape at-5

tributes: elevation, slope, aspect, curvature (plan, profile and mean), SAGA wetness
index (SWI) and sediment transport index (STI), all of which are commonly used to-
pographic features in digital soil mapping (Wiesmeier et al., 2011). The SWI is based
on the ratio of contributing upslope area per unit contour width and local slope angle
(Böhner et al., 2001).The STI is based on unit stream-power theory, where upslope10

contributing area is directly related to discharge (Moore and Burch, 1986). Classifi-
cation algorithms were used to divide the landscape into 7 and 16 homogeneous to-
pographic classes on the basis of curvature, slope and catchment size (Pennock et
al., 1987), and slope, surface texture and local convexity respectively (Iwahashi and
Pike, 2007). The derivation of these landscape attributes was carried out in ArcGIS 9.315

(ESRI, 2009).

2.1.3 Climatic data

The following climatic data were used as predictor variables: average annual rain-
fall (mm yr−1), accumulated temperature above 0 ◦C, median number of field capac-
ity days (i.e. the number of days per year that the soil moisture content is above20

field capacity), annual average potential evapotranspiration (mm yr−1) and maximum
potential soil moisture deficit (i.e. the water required to bring the whole soil profile
back to field capacity, mm). The data were originally derived as 1971–2000 averages
from monthly reports by the UK Meteorological Office, which provides information on
weather for a 5 km×5 km grid (Perry and Hollis, 2005). Average annual rainfall is the25

total of the monthly means per year and the accumulated temperature above 0 ◦C
gives an effective daily temperature above 0 ◦C per month (Hallett and Jones, 1993).
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Evapotranspiration was calculated using the Penman-Monteith equation, as detailed
in Hess (2000), while the potential soil moisture deficit (based on the balance of rain-
fall and evapotranspiration) was calculated using methods described by Jones and
Thomasson (1985). Field capacity days is the median number of days per year that
each soil type is calculated to be at or above field capacity based on water bal-5

ance calculations (assuming free drainage) over the period 1970–2000 (Jones and
Thomassen, 1985).

2.1.4 Geology

Soil properties derive, in part, from in-situ weathering of the parent material (Grimm
et al., 200) so a representation of geology is essential for a digital soil mapping ap-10

proach. A 1 : 50 000 geological map was obtained from the British Geological Survey
(BGS) which included the rock lexicon, giving the major rock unit (available for down-
load from http://edina.ac.uk/digimap) and the BGS rock classification scheme detailing
the lithology of the bedrock. The distribution of bedrock, by rock classification scheme,
is shown in Fig. 1c. We also used the same classification scheme to categorize su-15

perficial deposits (formerly known as drift), which represent the most recent geological
deposits.

2.1.5 Land use

The land use (Fig. 1d) was represented by the Land Cover Map 2000 produced by the
Centre for Ecology and Hydrology (CEH). We also produced a recoded land use map20

to reflect the land use at the time of the bulk density sampling. Satellite imagery was
classified into a 25 m raster dataset which was subsequently aggregated to a ten-class
1 km grid land cover map (Fuller et al., 2002). Previous studies have commonly only at-
tempted to make predictions within a single land use such as agricultural soils (Katterer
et al., 2006) or forest soils (Jalabert et al., 2010). When the region is heterogeneous,25

land use has proved to be an important determinant of Db (Hallett et al., 1998; Moreira
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et al., 2009). In this case, as land use was recorded when the Db samples were taken,
the land cover map was re-coded to reflect changes over time.

2.1.6 Soilscapes

To help evaluate the spatial performance of the models, results are assessed by
“Soilscape”. Soilscapes are landscape units derived from expert knowledge based on5

the 300 soil associations that make up the National Soil Map (Soil Survey Staff, 1983;
Mackney et al., 1983). Each association has a subgroup code (Avery, 1980) that iden-
tifies the diagnostic soil properties. From this, the Soilscapes have been delineated by
agglomerating National Soil Associations resulting in 25 classes. Within these national
classes, the Soilscapes have been subdivided and grouped into homogenized regions10

based on similarities in drainage characteristics, texture and geology.

2.2 Data pre-processing

Models were built using 342Db samples from the A Horizon and 339 samples from
the subsoil. Many studies differentiate between topsoil and subsoil by depth (De Vos et
al., 2005; Katterer et al., 2006). However, the lower depth of the topsoil layer can vary15

from 15 cm (Bellamy et al., 2005) to 30 cm (Martin et al., 2009). The data used in this
study were sampled by horizon, meaning that there was not a uniform sampling depth
between points and the number of samples taken at a given location was dependent
on soil morphology. As such, the A horizon, with an average depth of just over 22 cm,
was used to represent the topsoil. The subsoil layer comprised various B horizons20

(predominantly Bw and Bg) and, on average, represent a horizon between 23 and
47 cm in depth. Of the original samples, the A horizon was split at random in to 239
training and 103 validation samples, and the subsoil was split into 238 training and 101
training samples. Models were built using the training data sampled for each horizon,
then these models were applied to the validation data, to provide an unbiased estimate25

of the predictive power of each model.
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2.3 Statistical methods

In order to develop statistical relationships between a large number of landscape at-
tributes and Db it is necessary to apply statistical methods which can account for
complex, non-linear interactions between variables. We have opted to test two distinct
methods; which have previously been successfully applied to the prediction of a range5

of soil properties including Db (Tranter et al., 2007), soil texture (Ließ et al., 2012) and
NIR spectral reflectance (Rossel and Behrens, 2010). Both methods are suitable for
datasets with numerous predictors, containing both categorical and continuous data.

2.3.1 Random Forest (RF)

RF modeling has the potential to improve predictions made using classification and10

regression trees (CART) (Breiman, 2001). In essence, trees are constructed using a
bootstrap of the entire dataset and the splits at each node are not made by the best pre-
dictor from the entire suite of input variables, but from the best of a randomly selected
subset, which prevents overfitting (Liaw and Wiener, 2002). The model only requires
two user-defined parameters: the number of trees in the forest (ntree) and the number15

of variables tested at each node (mtry). The performance of the training model is as-
sessed by predicting the mean square error (MSE) of the “out of bag” portion of the
data at each tree, then averaging over the entire forest:

MSEOOB = n−1
∑n

i=1
(zi − ẑOOB

i )2 (1)

where zOOB
i is the mean out of bag prediction for the i -th observation. RF modeling20

also provides a measure of fit comparable to the R2 values of the other models. This
“pseudo R2” is labeled the “percent variance explained” and is calculated using:

Varex = 1−
MSEOOB

σ̂2
y

(2)
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where σ̂2
y is the total variance of the dependent variable calculated with n as the divisor,

rather than n−1 (Liaw and Wiener, 2002). The parameters were set to an ntree of 1000
and an mtry of p/3, where p is the number of input variables. Liaw and Wiener (2002)
suggest testing the mtry value by both doubling and halving the default. Models can be
sensitive to the mtry parameter, as testing a greater number of variables at each split5

will increase the strength of the individual tree but increase the correlation between
trees in the forest. Here the optimal mtry was determined using the tune RF function
(Ließ et al., 2012). Furthermore, the ntree value was increased from 500 (the default)
to 1000 as recommended by Prasad et al. (2006). This number of trees is sufficiently
large to stabilize errors, whilst not being too computationally demanding. An interest-10

ing feature of RF is its ability to rank predictor variables in order of importance, which
is done by measuring how much the “out of bag” estimate error increases when data
for a particular variable is “removed” from the analysis and the other variables are left
intact. This is done on a tree-by-tree basis for the entire forest. The models were gen-
erated using the “RandomForest” package (Liaw and Wiener, 2002) in the R statistical15

computing language (RDevelopment Core Team, 2008).

2.3.2 Artificial Neural Networks (ANNs)

The principles of ANNs are well established (Bishop, 1995) with Maier and
Dandy (2001) offering a practical guide for environmental modeling. The structure used
here was a multilayer perceptron, a powerful predictive technique and that most com-20

monly applied in soil science (Agyare et al., 2007). In this method, data are separated
into a series of nodes, with similar nodes arranged into layers: typically, an input layer
(containing the variables used for prediction), an output layer (where predictions are
made) and, in-between, a single hidden layer which weights and transforms the data to
extract meaningful relationships. For each model, the 239 samples used for developing25

the models were separated into a 75 : 25 percent split for training and testing respec-
tively. As with the other models the remaining 103 samples were used for independent
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validation. Splitting the data allowed the number of hidden nodes to be tested, which is
important as the optimum number of nodes will differ depending on the problem at hand
and the number of input variables. It is recommended that the number of hidden nodes
should be half the number of input variables plus the number of output variables (which
in our case was one) (Statsoft, Inc., 2011). Generally, adding more nodes will increase5

the performance of the model. However, this may lead to overfitting the data. To avoid
this, the ANN uses a back-propagation algorithm (Rumelhart et al., 1986) to test the
performance of the network on both training and testing datasets. Training the network
should reduce the “error function” associated with predictions, such that when the error
function of the testing dataset plateaus or increases, ANN overfitting is suggested. The10

error function for regression is the Sum of Squares error given by:

ESOS =
N∑
i−1

(yi − ti )
2 (3)

where N is the number of training cases, yi is the predicted value of the i -th case and
ti is the observed value. Ideally, when the differences in the error function are negli-
gible, the network with the fewest nodes is chosen. As the test dataset plays a role in15

developing the ANN infrastructure, a validation data set is used to independently test
the predictive power of the models. The best performing models were selected using
values of R2 and root-mean-square error (RMSE). ANNs can also rank variables in or-
der of importance, although they use a different method from RFs. Here, data for each
variable is replaced, in turn, by its mean value from the training data and the effect20

on the error function is recorded. The variables are then ranked by the amount their
omission increases the overall error function (Lou and Nakai, 2001). The learning rate
for the ANNs was set to 0.1 and the analysis was carried out using STATISTICA9 (Stat-
Soft Inc., 2011). One issue arising when using ANNs for producing predictive maps is
that they will not make predictions in areas where data differ from those of the train-25

ing data. In other words, if not every category of, for example, land use is included
in the training data, the final maps will leave blank areas when they encounter these
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missing categories as opposed to inferring the Db values from available data. While
this leaves areas with missing predictions, it means the accuracy of the final map is not
compromised.

2.3.3 Calculations of OC stock and associated variability

To illustrate the importance of Db for soil inventory, the variation in carbon stock esti-5

mation was calculated using measured, predicted and mean Db values. Carbon stock
was calculated using:

S = d ·OC ·Db ·10 (4)

where S is the soil organic carbon stock (t C ha−1), is depth of the topsoil (m), OC is
organic carbon concentration per unit mass of dry soil (kg C kg−1) and Db is soil bulk10

density (kg m−3). Note that within our calculations, depth is kept constant. To evaluate
the uncertainty associated with carbon stock estimation, it is necessary to propagate
the errors associated with both OC and Db measurements and predictions, while keep-
ing depth constant (Schrumpf et al., 2011). The variance is given using the formula:

15

Variance(OCStock) = (OCStock)2 ·
(

(σOC)2

(OC)2
+

(σDb)2

(Db)2
+2

σOC−Db

OC ·Db

)
(5)

where σOC and σ Db are the standard deviations of OC concentration and Db respec-
tively and σ OC - Db is the covariance between the OC concentration and Db.

3 Results

3.1 Model performance20

The results for the RF and ANN for both topsoil and subsoil are shown in Table 1. For
the A Horizon, the best performing model was the RF, with ANN giving similar, albeit
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slightly inferior results in terms of predictive power. In the subsoil, neither of the models
performed particularly well, with ANN, the best performing model, explaining just over
30 percent of the variation in Db. RF performed considerably less well, explain only 20
percent of the variation. It is interesting to note that although the model fit (in terms of
R2 values) is considerably worse for the subsoil than for the A Horizon, the RMSE is5

lower in the subsoil models. This reflects the smaller variation between Db in subsoil
horizons.

3.2 Predictor variables

Both modeling approaches have the ability to rank the predictor variables in order of
importance. Although they do so in different ways, this allows us assess whether there10

are common predictors influencing the variation in Db. In the A horizon, the consistently
important predictors are land use and soil great group or association. Climatic factors
also feature as important predictors, with annual average temperature and median field
capacity days shown to be significant for the RF and ANN models, respectively. The
variation in the subsoil layers can be more attributed to a combination of soil associa-15

tion, parent material and bedrock geology.

4 Discussion

4.1 Model performance

Random Forests were able to describe Db most effectively, which is unsurprising as
they are designed specifically for large, heterogeneous datasets containing a mixture20

of both continuous and categorical variables (Liaw and Wiener, 2002). Indeed, tree-
based models have been used to successfully predict Db using a mix of landscape
data and soils data (Martin et al. 2009). In terms of model performance, RF achieved
similar results to a number of other studies, all of which have used textural properties as
predictors (Tranter et al., 2007; De Vos et al., 2005; Heuscher et al., 2005). The ANN25
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model also performed well for the A Horizon. Previous studies (e.g. Minasny et al.,
1999; Keshavarzi et al., 2010) have reported both high and low ANN performance for
ANN data. This can be attributed to the nature of the property being predicted. Wösten
et al. (2001) suggest that generally, when there are more than three predictor variables
and variables are subject to complex interactions, non-linear modeling techniques such5

as AAN and RF become necessary. This is clearly the case when predicting Db from
landscape attributes. The poor performance of both techniques in the subsoil layer
reflects the lower spatial variability of the subsoil Db (Braakhekke et al., 2012), meaning
changes in landscape predictors exhibit relatively little influence.

4.2 Variable importance10

It has been well established that OC content is usually the most important predictor
when modeling Db. This is unsurprising as the relationship between the two has been
well defined (Rawls, 1983) and used extensively in predictive modeling (Kaur et al.,
2002). However, Calhoun et al. (2001) found that particle size distribution and OC
generally explain no more than 60 percent of the variation in bulk density. Of particular15

interest here is the predictive power of the seldom-used variables which represent a
range of topographic, land use and climatic factors. The importance of putting Db in a
landscape context is supported by the successful stratification of previous regression
models by land use (Steller et al., 2008; Moreira et al., 2009) and parent material
(Hallett et al., 1998; Calhoun et al., 2001). However, these factors have been explicitly20

included in the modeling process only relatively recently (Martin et al., 2009; Jalabert
et al., 2010). Of the landscape variables included, land use, parent material and soil
classification are deemed to be consistently important predictors. The influence of soil
class is unsurprising as, along with other attributes, soils are classified based on their
textural properties. Using pre-existing soil maps is, in essence, a way of predicting25

using spatially distributed textural classes. The predictive power of land use will depend
on the classification used and the resolution of the data layer. Previous prediction of Db
using boosted regression trees by Buttner et al. (2000) has suggested that land use
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derived from the European CORINE map was the least influential of all their predictor
variables, as these land use classes were too broad. However, more detailed, higher
resolution land use information transpired to be the second most powerful explanatory
variable, almost on a par with OC content (Jalabert et al., 2010). As land use was
recorded at the time of sampling, the accuracy of the layer was not in question, and5

hence it proved to be an important predictor. To make use of use of the available land
use data, the CEH Land Cover Map was re-coded to reflect the land use at the time of
sampling. This was important as, when used as a predictor without re-coding, present
day land use categories were shown to be poor predictors of Db. This can probably be
attributed to the fact that sampling of Db and the creation of the land use layer were10

approximately 30 yr apart, with significant changes over the intervening decades.
Parent material lithology is one of the leading predictors for three of the four models.

This may be attributed to the presence of recently deposited material, such as alluvium,
or slow draining or impermeable bedrock which are particularly influential for overlying
soil formation (Hallett et al., 1998). Pertinently, a significant number of samples in this15

study were taken from alluvial plains, in which soil properties, such as Db, are closely
related to the properties of the underlying alluvium, thereby promoting the influence
of parent material as a significant predictor. In other areas with less alluvium, parent
material may be less influential on Db. Predictably, parent material becomes a more
influential predictor in subsoil horizons, which are less susceptible to climatic changes.20

Bedrock geology also becomes more influential below the A horizon. It is interesting
that the climatic variables are such prominent predictors because they have a relatively
low spatial resolution (5 km grid), in comparison with other predictor variables, although
the link with some variables (e.g. field capacity) has clear physical significance. This
suggests that improving the resolution of climatic predictors may improve model ac-25

curacy. The DTM-derived landscape attributes proved to be relatively poor predictors.
Although Martin et al. (2011) mention including topographic predictors as a possible
improvement for mapping OC stocks, they are not generally utilized. In similar work
to model saturated hydraulic conductivity, landscape derivatives have offered some
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improvement to ANN models, but they cannot be used without other inputs – particu-
larly at a regional scale (Agyare et al., 2007), this reflects the inclusion of elevation as
a prominent predictor in the RF model.

4.3 Modeling without using measured soil properties

Mapping Db without point samples of soil properties is of interest for two reasons.5

Firstly, since the cost of large scale soil sampling can be prohibitive, the ability to use
pre-existing or remotely sensed data would be desirable. As many countries already
have soil, land use and geological maps at a variety of scales, it makes sense to see
if further information can be extracted from them in the form of predictive models. Sec-
ondly, a key research theme in spatial mapping is the assessment soil carbon stocks10

because they relate to the global carbon budget (Bellamy et al., 2005; Tornquist et al.,
2009; Wiesmeier, et al., 2011). One issue of interest here is the lack of spatial rep-
resentations of Db. Instead, mean Db values are used to convert modeled SOC con-
centrations into SOC stocks (Grimm et al., 2008). However, if variations in Db within
individual soil types are not taken into account, significant errors in C stock estimation15

are possible. As datasets tend to be limited, and OC and Db are not always sampled
together, being able to map Db accurately and independently of measured OC con-
tent, would avoid circularity in modeling (i.e. using carbon content to predict Db which
is then used to predict carbon stocks) and improve stock estimation at the same time.
As we have found, most of the important predictor variables are categorical (land use,20

parent material). For the A Horizon, we have found that both RF and ANN techniques
can explain over 55 percent of the variation in Db. This result is significant because it
shows that it is feasible to create a continuous surface of Db using landscape attributes
alone. A spatial representation of Db across the landscape can be combined with a
spatial representation of carbon concentration to give a more accurate estimate of C25

stocks and pools. At any given location, there will be an associated Db value, at an ap-
propriate scale, which has been independently derived and which has an associated
unambiguous error estimate.
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4.4 Mapping Db across the landscape

For the A horizon, we have produced maps of Db for the topsoil of the entire study
area using both ANN and RF (Fig. 2). Topsoil is generally considered to be the most
important soil compartment in terms of soil carbon content, in part because OC con-
centration generally decreases with depth (Jones et al., 2005). Of the two methods,5

ANN gives a slightly wider range of predicted Db values than RF but still within the
limits of the measured data reported within the National Soil Inventory of England and
Wales (Loveland, 1990). Fewer than three percent of the samples in the National Soil
Inventory had a Db lower than the minimum predicted value. In contrast, RF (Fig. 2b)
provides more conservative estimates of Db, especially for the upper values. Despite10

this, the RF model was shown to have slightly more predictive power than the ANN
model. Broadly speaking, the models agree on the spatial trends of Db distribution,
most notably, areas of low Db in the north and at the westerly edge of the study area.
The areas of missing data in the ANN model reflect missing data in the training dataset.
Here the RF models will make predictions based on the available data.15

4.5 Spatial performance

Spatially, there is broad agreement between the RF and ANN predictions, in terms of
the areas of high and low Db. Figure 3 shows the individual performance of each model,
in terms of prediction residuals as an average per Soilscape. In the A horizon, the there
is a degree of spatial variation in the relative performance of each statistical approach20

(Fig. 3b and c). In terms of land use and soil group, the two most influential predictors
of topsoil Db, Random Forests gives its best predictions in areas of Brown Earths under
arable land use, whereas the neural networks function best when predicting in areas of
gleyic soils in regions other than arable or grassland. In the subsoil, the spatial patterns
of model performance are broadly similar for both the ANN and RF models. In relation25

to parent material, the best predicted regions coincide with areas of sandstone bedrock
and superficial deposits containing siliceous stones while the worst performing areas
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overly clay or soft mudstone. Depending on the modeling technique used, the spatial
variation in model performance, can be used to inform any future sampling schemes,
with an increased sample density in areas where a model is likely to underperform.

4.6 Stock estimation

To illustrate the potential improvement in OC stock estimation which could be achieved5

using the gridded surface of Db compared with using a mean value or an arbitrary
constant (Mestdagh et al., 2009; Hanegraaf et al., 2009) we calculated the OC stock at
each sample point using three different sets of Db: the measured Db, the RF gridded
prediction of Db and the overall mean measured value of Db calculated using all sample
points in the training data. Note that results for C stock calculations using model output10

were produced using a calibrated RF model that used the training dataset alone, the
validation data was used solely to assess model performance. The average OC stocks
calculated using each Db estimate are shown in Table 2, along with the difference
between the estimated and measured mean OC value, expressed as a percentage of
the mean measured value. The 5th and 95th percentile errors in measured OC stocks15

are also shown. The gridded surface refers to a map of RF-predicted Db values (Fig. 2b)
produced as a raster grid with a cell size of 100×100 m across the entire study area.
The main advantage of the gridded surface method over PTFs, which can be applied
to individual points using measured soil property data for the point in question, is that
the gridded method can be applied to the entire study area with the same quantifiable20

level of both performance and error estimation at all spatial locations. In contrast, the
accuracy of predictions made using a PTF is unknown beyond each sampling point.

Using the individual measured point-based Db values gives an average OC content
of 73.01±0.56 t C ha−1 compared to an average value of 71.31±0.60 t C ha−1 pro-
duced using the ANN-predicted Db values and a value of 78.21±0.82 t C ha−1 gen-25

erated using a single measured mean Db value. Using the OC stock calculated with
measured Db as a yardstick, the gridded estimate of Db clearly yields a better C stock
estimate compared with using a single (mean) Db value. In this case, the RF predictions
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will slightly underestimate Db whereas using a mean value will overestimate, with an
error around three times larger. The difference in the error associated with stock predic-
tion using the gridded Db values compared to using the mean value of Db is particularly
evident when predicting C stock levels in soils at the extremes of the expected range
(i.e. the prediction errors for the 5th and 95th percentile OC stock values). The potential5

improvement in using the gridded estimate of Db is most evident in the 95th percentile,
where using a mean Db value will yield an error nearly three times larger.

To put the magnitude of the errors illustrated in Table 2 into context, Bellamy et
al. (2005) suggest that the average annual rate of change in the OC content for UK
topsoil is 0.67 g kg−1 yr−1, which equates to approximately 1.79 t C ha−1 yr−1. Thus the10

average annual change in stock is smaller than the error in average stock predicted
using a mean Db value. The total soil OC inventory across the whole study area, cal-
culated using both the mean and gridded Db estimates, is shown in Table 3. There is a
pronounced difference in the OC stock per unit area (over 4 t ha−1) which equates to a
difference of almost 8 million tonnes of carbon for this study area alone. This suggests15

that using a mean Db value to calculate carbon stocks within the region will significantly
overestimate the amount of carbon in the soil.

To further illustrate the potential of this method, carbon stocks were calculated for the
landscape as a whole and for two selected individual Soilscapes using both the mea-
sured mean and gridded predictions of Db. Soilscapes were selected based on the20

accuracy of the gridded model’s Db predictions, including the Soilscapes with the most
accurate and most inaccurate Db predictions. The mean Db was calculated for each
Soilscape individually, based on the measured values within it (Fig. 4). Results are
shown in Table 3. The two Soilscapes; the Central Upland Spine of Northern England
and the Central England Plateau show areas of high and low carbon stocks, respec-25

tively. While the stock calculated by both methods is broadly similar (within 2 t C ha−1) it
must be noted that the gridded model has a much greater predictive accuracy, with con-
fidence bounds between two and three times smaller compared with the mean model.
The confidence bounds are large because, at the Soilscape level, there are relatively
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few Db samples on which to calculate the mean. If the mean of all samples in the entire
study area were used, the mean model would give a prediction of 79.75±6.18 t ha−1

(Table 3). This is a problem as, for the selected soilscapes, the mean model would
either drastically under or overestimate carbon stocks. This issue does not affect the
gridded model, because it is able to apply rules learned across the entire study region,5

to identify areas of high and low bulk density, a key advantage when working at this
scale. A scale at which errors in Db estimation have shown to be highly significant to
carbon stock inventory (Goidts et al., 2009). Estimating C stocks and changes, espe-
cially at finer spatial scales requires the use of refined estimates of Db, which can be
obtained using the types of landscape-scale models described in this paper. It is at10

these scales that many spatially distributed land-atmosphere interaction models such
as JULES operate (Harrison et al., 2008).

5 Conclusions

It is possible to predict soil Db solely using landscape derivatives, such as land use,
geology and climatic data, if only for the topsoil. Of the two statistical modeling tech-15

niques tested, RF marginally provided the best results for the A horizon, while ANN
performed better for the subsoil. In comparison to previous studies, which have at-
tempted to predict Db from soil property data, the models constructed in this study
were able to provide similar results, in terms of model performance, without using soil
texture or OC content as predictors. The suite of landscape derivatives used was able20

to explain over 55 percent of the variation in topsoil Db.
The real advantage of this approach is the models’ potential to improve soil car-

bon stock estimates at a landscape scale, because they do not rely on point-scale
measurements as explanatory variables. This means that it is possible to create a con-
tinuous, gridded surface of Db without interpolation which can be used in combination25

with continuous surfaces of predicted soil carbon content to improve estimations of
carbon stock. In addition, the technique yields a more accurate measurement of the
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error associated with such predictions. In terms of carbon stock prediction, the gridded
Db estimate offers a significant improvement in accuracy compared with using a single
value of Db (e.g. the mean). In particular, this approach is valuable when applied at a
sub-landscape, regional scale, especially in data-poor areas.
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Table 1. Modeling results (using the validation dataset) for RandomForest and Artificial Neural
Network models. The Suffix “A” indicates the results are for the A Horizon and the suffix “S”
indicates the results are for the subsoil. The top five predictor variables are ranked in order of
importance.

Model R2 RMSE Predictor Variables

RF-A 0.5602 0.1651 1.Land Use 2. Soil Association 3. Elevation
4. Great group 5. AT0 Annual

NN-A 0.5507 0.1677 1.Great Group 2.Land Use 3. Bedrock
4.Parent Material 5. FCD MED

RF-S 0.2008 0.1581 1. Soil Association 2. Parent material
3. Land Use 4. Bedrock 5. PET

NN-S 0.3108 0.144 1. Land Use 2. Parent Material 3. Soil Association
4. Bedrock 5. Pennock landscape classification
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Table 2. Point estimates of OC stock. Average stock was calculated using Eq. (6). Of the pre-
diction methods, “Measured” uses measured Db values, “Gridded” uses the gridded predicted
Db values and “Mean” uses the measured mean Db for the entire study area.

Prediction Average OC Error from 5th Percentile 95th Percentile
Method stock (t C ha−1) measured mean error (%) error (%)

(%)

Measured 73.01±0.56 – – –
Gridded 71.31±0.60 −2.31 −15.43 8.37
Mean 78.21±0.82 7.12 −19.57 22.84
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Table 3. Carbon stock for the entire study area and by selected Soilscape.

Location OC Stock (t ha−1) OC Stock (t ha−1)
estimated using mean Db estimated using gridded Db

Full Study Area 79.75±6.18 75.42±7.19
Central England Plateau 66.06±19.21 64.44±6.11
Central Upland Spine of N England 86.82±14.25 88.08±6.34
Total Carbon Inventory (Tonnes) 144 746 250±11 216 700 136 887 300±13 049 850
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 742 

Figure 1. Location and study area. a) Study location in relation to England and Wales. b) 743 

Digital elevation models and sample locations. c) Geological rock classification scheme. d) 744 

Dominant land use classes.  745 
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Fig. 1. Location and study area. (a) Study location in relation to England and Wales. (b) Digital
elevation models and sample locations. (c) Geological rock classification scheme. (d) Dominant
land use classes.

18861

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/18831/2012/bgd-9-18831-2012-print.pdf
http://www.biogeosciences-discuss.net/9/18831/2012/bgd-9-18831-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 18831–18864, 2012

Modeling soil bulk
density at the

landscape scale and
its contributions

K. P. Taalab et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|36 

 

 746 
Figure 2: Predicted bulk density  across the landscape obtained from models built using the 747 

training dataset. A) Artificial neural networkB) Random forest. 748 
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Fig. 2. Predicted bulk density across the landscape obtained from models built using the train-
ing dataset. (A) Artificial neural network. (B) Random forest.
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 750 
Figure 3: Spatial variation in model performance by Soilscape. a) The sample density for A 751 

horizon samples b) Average residuals for the ANN model prediction in the A horizon c) 752 

Average residuals for the RF model prediction in the A horizon d) The sample density for 753 

subsoil horizon samples e) Average residuals for the ANN model prediction in the subsoil 754 

horizon f) Average residuals for the RF model prediction in the subsoil horizon  755 
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Fig. 3. Spatial variation in model performance by Soilscape. (a) The sample density for A
horizon samples. (b) Average residuals for the ANN model prediction in the A horizon. (c)
Average residuals for the RF model prediction in the A horizon. (d) The sample density for
subsoil horizon samples. (e) Average residuals for the ANN model prediction in the subsoil
horizon. (f) Average residuals for the RF model prediction in the subsoil horizon.
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Figure 4. Model performance and stock estimation by Soilscape. a) Model performance by 762 

Soilscape. The Soilscape marked with white hatching is the one in which the RF model 763 

performed best and the one with the black hatching is the one in which it performed least well 764 

b) Carbon stock estimation using gridded prediction of Db values. c) Carbon stock estimation 765 

using mean Db values.   766 
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Fig. 4. Model performance and stock estimation by Soilscape. (a) Model performance by
Soilscape. The Soilscape marked with white hatching is the one in which the RF model per-
formed best and the one with the black hatching is the one in which it performed least well.
(b) Carbon stock estimation using gridded prediction of Db values. (c) Carbon stock estimation
using mean Db values.
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